Talking Head Synthesis是一项新兴技术,在电影配音,虚拟化身和在线教育中具有广泛的应用。最近基于NERF的方法会产生更自然的会话视频,因为它们更好地捕获了面部的3D结构信息。但是,需要使用大型数据集对每个身份进行特定模型。在本文中,我们提出了动态面部辐射场(DFRF),以进行几次交谈的头部综合,这可以在很少的训练数据中迅速概括为看不见的身份。与现有的基于NERF的方法不同,该方法将特定人的3D几何形状和外观直接编码到网络中,我们的DFRF条件面对2D外观图像上的辐射场,以便先验学习面部。因此,可以通过很少的参考图像灵活地调整面部辐射场。此外,为了更好地对面部变形进行建模,我们提出了一个在音频信号条件下的可区分面翘曲模块,以使所有参考图像变形到查询空间。广泛的实验表明,只有数十秒钟的训练剪辑可用,我们提出的DFRF可以合成天然和高质量的音频驱动的会说话的头视频,用于只有40k迭代的新身份。我们强烈建议读者查看我们的补充视频以进行直观的比较。代码可在https://sstzal.github.io/dfrf/中找到。
translated by 谷歌翻译
对象通常与多个属性相关联,这些属性通常显示出很高的相关性。建模属性之间的复杂关系为多属性学习带来了巨大的挑战。本文提出了一个名为label2label的简单而通用的框架,以利用复杂的属性相关性。 Label2Label是从语言建模的角度来进行多属性预测的首次尝试。具体而言,它将每个属性标签视为描述样本的“单词”。当每个样本带有多个属性标签注释时,这些“单词”自然会形成无序但有意义的“句子”,该句子描述了相应样本的语义信息。受到NLP预训练语言模型的显着成功的启发,Label2Label引入了图像条件的掩盖语言模型,该模型随机掩盖了标签“句子”中的一些“单词”令牌,并旨在基于“蒙版”恢复它们。句子和图像特征传达的上下文。我们的直觉是,如果神经网可以根据上下文和其余属性提示推断丢失的属性,那么实例的属性关系就会得到很好的掌握。 Label2Label在概念上是简单且经验强大的。与高度自定义的特定领域方法相比,我们的方法在不融合特定于任务的先验知识和高度专业的网络设计的情况下,在三个不同的多属性学习任务上获得了最新的结果。代码可从https://github.com/li-wanhua/label2label获得。
translated by 谷歌翻译
不同的人以不同的方式衰老。为每个人学习个性化的年龄估计器是年龄估计的有前途的方向,因为它可以更好地建模衰老过程的个性化。但是,由于高级要求,大多数现有的个性化方法都缺乏大规模数据集:身份标签和足够的样本使每个人形成长期衰老模式。在本文中,我们旨在学习没有上述要求的个性化年龄估计量,并提出一种元学习方法,称为年龄估计。与大多数现有的个性化方法不同,这些方法学习了培训集中每个人的个性化估计器的参数,我们的方法将映射从身份信息到年龄估计器参数学习。具体而言,我们引入了个性化的估算器元学习器,该估计量元学习器将身份功能作为输入并输出定制估算器的参数。这样,我们的方法就可以学习元知识而没有上述要求,并无缝将学习的元知识转移到测试集中,这使我们能够利用现有的大规模年龄数据集,而无需任何其他注释。在包括Morph II,Chalearn Lap 2015和Chalearn Lap 2016数据库在内的三个基准数据集上进行的大量实验结果表明,我们的元大大提高了现有的个性化方法的性能,并优于最先进的方法。
translated by 谷歌翻译
在本文中,我们介绍了一种在2021 Vipriors实例分段挑战中使用的数据有效的实例分段方法。我们的解决方案是一个修改版的Swin变压器,基于MMDetection,它是一个强大的工具箱。为了解决数据缺乏问题,我们利用了数据增强,包括随机翻转和多尺度培训来培训我们的模型。在推理期间,多尺度融合用于提高性能。我们在整个培训和测试阶段仅使用单个GPU。最后,我们的团队在测试集上实现了0.366的结果:0.95,在测试集上与其他排名方法竞争,而仅使用一个GPU。此外,我们的方法达到了AP@0.50:0.95(中等)0.592,其中排名第二。最后,我们的团队在组织者宣布的所有参赛者中排名第三。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译